Binary vascular reconstruction from a limited number of cone
beam projections
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This paper describes a method to perform reconstruction of vascular cross-sectional images from a
limited number of x-ray angiographic cone-beam projections. It is assumed that the projection data
can be simplified by identifying blood vessels in each angiogram and removing signals due to-other
structures. Under these conditions, the x-ray attenuation coefficient, u, can be modeled as a binary
variable having a value ug within the vessel and “0” outside. The reconstruction is performed by
minimizing a cost function using the method of simulated annealing. In this paper, we demonstrate
that the introduction of a priori information allows one to reconstruct a sphere and a simulated
branched vessel from three views with, respectively, 97% and 93% of voxels having correct values.
The addition of a continuity constraint for the reconstruction of the branched vessel resulted in
further reduction in the percentage of misplaced voxels. Calculations require from one to six hours
of CPU time on a Sun SparcStation 2 computer for the cases investigated here. The effect of noise,
“cooling” schedule, and number of views on the reconstruction are examined using simulated
vessel projections. Modifications to our approach to accelerate the reconstruction are also discussed.
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I. INTRODUCTION

Several studies have demonstrated that visual assessment of
the dimensions of a lesion from angiograms is subject to
considerable inter- and intra-observer variability which can
affect decisions on the course of treatment.' These findings
have stimulated the development of computer-aided quanti-
tative approaches to measure vessel dimensions and posi-
tions. Such methods are potentially advantageous in that they
are not subject to variations in the performance of the human
observer.*~1° In this paper, we will describe a method to
perform limited-view divergent (cone-beam) reconstruction
of vascular cross sections. The approach used is an extension
of a parallel beam binary reconstruction algorithm for two
orthogonal views, first proposed by Chang.!!

Quantitative methods for angiography can be used to de-
termine the cross-sectional area of a selected blood vessel
segment.® A technique which can also determine the shape of
a vessel lumen might provide an important tool in measuring
the progression of vascular disease or its regression as a re-
sult of therapy. In order to perform this task, an image recon-
struction technique must be used. Conventional computed
tomography is not well suited for this undertaking since the
time required to obtain multiple slices is several seconds. As
well, because of the size and spacing of the x-ray detectors,
resolution of the CT images is currently insufficient to assess
the patency of smaller vessels in which an intervention might
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be considered. Although an improvement in spatial resolu-
tion of CT is possible, it would necessitate a large increase in
radiation dose to the patient.

If, as is current in angiography, images are acquired as
cone--beam projections using an area detector such as an
image intensifier, data for each view can be obtained in a few
milliseconds. A full 3D CT reconstruction can be performed
from these two-dimensional projections but the number of
views required to solve this ill-posed problem would be
large. However, if a priori information can be introduced, the
number of views required to perform an acceptable recon-
struction could be significantly reduced and cross-section im-
aging could be performed using projections obtained with
suitably modified angiographic equipment.

A number of approaches have been developed to perform
limited view reconstruction.>~!® These methods yield sig-
nificant improvements over classical reconstruction methods
like filtered back-projection and ART when used with a small
number (<8) views. However, in order to depict the shape of
a vessel from a limited number of views with even greater
accuracy, additional constraints must be added. These con-
straints are derived from a priori information specific to the
particular imaging problem and are introduced in order to
further restrict the nature of the solutions obtained. One way
in which this can be accomplished is to simplify the projec-
tion data by identifying the signal due to blood vessels in
each projection and removing the signal due to structures
other than vessels. This might be achieved by subtracting an
image obtained prior to the injection of contrast agent or
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FiG. 1. Diagram depicting how the signal 1/1;, provides information regard-
ing the path length traveled by x-rays through an iodinated vessel along a
line joining each detector element to the x-ray source.

possibly by identifying blood vessels, estimating the back-
ground signal in their vicinity and using this information to
isolate the signal due to the opacified vessels.

If the injection of contrast agent is performed with suffi-
cient vigor to displace blood, the fluid in the arteries will
have a uniform composition and if no other signals are
present, the incremental x-ray attenuation coefficient due to
the presence of the opacified vessel lumen, can be written as

Mo Wwithin a vessel

MY, D=10" Ctherwise W

In order to simplify both this discussion and our simulations,
a value of uy=1 will be used in the remainder of this paper,
i.e., the attenuation coefficient of the vessel will be treated as
a binary variable.

We consider an image in which the signal due to attenu-
ation by nonvascular tissue has been removed. Let I, be the
signal due to x rays interacting with a detector in the absence
of any absorber and / be the signal following attenuation of
the x rays along a path length ¢ of contrast medium. In the
case of a monoenergetic x-ray source and pencil-beam ge-
ometry (no scatter contributing to I), the Beer—Lambert re-
lationship allows calculation of the path length as

il
t=—In|—|—. 2)
lo) po

Binary reconstruction uses such path length information
obtained from multiple radiographic views as shown in Fig.
1 to determine the shape of the vessel lumen. However, it is
not realistic from a computational point of view to perform
binary reconstruction by generating all 2" distinct objects
having n voxels. Chang'"'"!® and Wang!® investigated this
problem and developed methods to reconstruct a two-
dimensional slice from two orthogonal one-dimensional pro-
jections. Slump and Gerbrands?® performed binary recon-
struction on orthogonal projections of heart ventricles adding
constraints to favor continuity between adjacent slices.
Reiber?! applied these ideas to the reconstruction of coronary
arteries. Finally, Van Tran ef al.? performed binary recon-
struction of phantoms and of an ‘““in vitro heart” using an
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algorithm in which cross-coordinate moments are obtained
based on assumption of connectivity and continuity and in-
verted to obtain slices of the object.

If additional views are added, it is no longer possible to
perform reconstruction in the manner proposed by Chang
et al. This is because one cannot specify the criteria for the
assignment of values to voxels for rays acquired at arbitrary
angles, since a given voxel will appear in adjacent ray sums
with different weighting coefficients.”®> When values are as-
signed according to an heuristic rule, as proposed by
Crewe**? and Krishnan,?® we have determined that incorrect
assignments of voxel values may occur and that these will
not be detected until additional values are assigned and in-
consistencies appear. Furthermore, when an inconsistency
does appear, it will not be possible to determine which pixel
assignment was the cause. Although these methods will not
in general satisfy the projection data exactly, Crewe has
shown that the reconstruction does resemble the original ob-
ject from which the projections were generated.

In summary, if we use existing reconstruction methods,
we are faced with a dilemma. (1) We can use Chang’s algo-
rithm for two orthogonal paraliel beam views which provides
a reconstruction that will satisfy the projection data exactly if
these data are consistent. If the object is complex, several
reconstructions will satisfy the projection data and the results
obtained will be suboptimal. (2) We can use more views to
resolve ambiguities that arise from the reconstruction of
complex objects but methods suggested thus far make voxel
assignments according to heuristic rules.

The method we propose differs in two respects (1) It in-
corporates the cone beam geometry encountered in angiog-
raphy. (2) Since, like our predecessors, we have been unable
to find a rule to assign a definite value to a given voxel, we
have developed a method where no single voxel assignment
is permanent. In other words, the value of a particular voxel
may be changed several times during the reconstruction pro-
cess as is the case in iterative reconstruction methods.

Il. MULTIPLE-VIEW CONE~BEAM BINARY
RECONSTRUCTION

A. Acquisition geometry and projection operator

Since angiograms are the result of divergent projections
of opacified vessels, it is desirable to develop a reconstruc-
tion method that will work with two-dimensional cone—beam
projections. In addition, this method would be most practi-
cally implemented if it were flexible regarding the angular
distribution of these views, allowing one to select an acqui-
sition geometry that will minimize the overlap in the projec-
tion of vessels. It is also desirable for this approach to func-
tion with an arbitrary number of views in order to overcome
the ambiguities associated with two view reconstruction
when multiple vessels are present.”’

Figure 2 depicts the acquisition geometry used for binary
reconstruction. The origin of the three-dimensional coordi-
nate system is given by the point O. The position of the x-ray
source is given by the vector s. The detector lies in a plane
normal to the unit vector n and D is a point that intersects the
detector plane which defines the vector d=OD. The position
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FIG. 2. Acquisition geometry for limited-view cone—beam reconstruction.

of a point in the detector plane is given in terms of a second
coordinate system (u,v) originating at the point D. The v
axis is parallel to the unit vector e while the u axis is parallel
to eXn. From these definitions, it follows that a ray joining
the x-ray source to a point (u,,vq) in the detector plane is
specific in terms of the parameter g by

(x,y.2)=fg+s, 3)
where f is a vector such that
f=ve+uexXn+d—s. 4)

Knowledge of the acquisition geometry allows one to de-
termine the projection coordinates (u,v) of a point (x,y,z) in
the patient by solving for A, B, C in the linear system

x—s,=Ae,+B(eyn,—en,)+C(d,—s,),
y—s,=Ae,+B(en,—emn,)+C(d,~s,), (5)
z—s,=Ae ,+B(e,n,—eyn,)+C(d,—s,),

where A=vq, B=uq, C=gq so that v=A/C and u=B/C.
A set of two-dimensional projections through an object

having an x-ray attenuation coefficient, u(x,y,z), along lines

described in Eq. (3) are given by the path integral

f
pfs(u,v)=f M(mlﬁ—s)dh. (6)

In order to perform reconstruction of digital images, we de-
fine a discrete projection operator based on Eq. (6). A three-
dimensional binary object can be defined as

O(Xi Vi ’Zi)

|1 if voxel (x;,y;,z;) is part of the vessel
|0 otherwise

Ll

™
where / is an index over all voxels. We define an operator P
that projects a discrete binary object composed of voxels to
form sets of two-dimensional images denoted by p(m,u,v)
such that

p(m,u;,v;)=Plo}(m,u;,v;)=Plo(x;,y;,z)}, (8)

where (u; v j) are the coordinates of the jth detector element
and m is an index indicating the view number. This operation
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FiG. 3. Diagram depicting how the signal from a single voxel is projected
onto 1., =4 detector elements.

implicitly contains weighting coefficients describing how
rays interact with a three-dimensional volume of voxels. We
choose a discretization formula given by

plmu;,v)=2 8u;—u(x;,y;,z;,m.l))
il

X 5(vj—v(xi,yi,zi,m,l))

Xo(x;,yi,2)w(xy;,z;.m,l), 9)
where

1 if x=0

o(x)= 0 otherwise

(10)

is a discrete delta function.

The expressions u(x;,y;.m,l) and v{(x;y;,z;,m,l) pro-
vide the positions of all detector elements onto which a voxel
located at (x;,y;,z;) will project and are determined by solv-
ing the linear system described in Eq. (5) for (u,v) and
selecting the detector elements closest to that location. The
variable ! (1=<I=</_,,) is an index over these detector ele-
ments. In this paper, the weighting coefficients are calculated
using bilinear interpolation and at most /,,, =4 detector ele-
ments are affected by the projection of a given voxel as
shown in Fig. 3. The factor w(x;,y;,z;,m,l) weights the
contribution of the voxel (x;,y;,z;) to the various detector
elements in each view and is normalized so that

! max

E W(xi’yiazivm’l)z 1
=1

Yi,m.

(11)

It is also possible to specify the projection operator in terms
of W(m,u g ,k), a detector-based weighting coefficient
where & is an index over all the voxels that interact with a
ray from the source to the detector element having coordi-
nates (u;,v;). The projection operation can then be written
as



1842 Robert, Peyrin, and Yaffe: Binary vascular reconstruction

p(m,uj,uj)=2 o(x(m,u;,v;,k),y(m,u;,v;.k),
k

Z(m,ujsvj’k))w(msuj7Uj7k)- (12)

Equation (12) is a more compact method of expressing the
projection operator but Eq. (9) is a more convenient form to

1842

use in our approach to solving the binary reconstruction
problem.

B. Mask function

If we can identify projections of blood vessels in all the
available views, we can specify a volume to which to the
reconstruction process can be confined by defining the mask
function

p[m’u(xi’yiizhm’l)’U(xi’yi’Zi’m’l)]:() or

0 if Vim
mask(xi »Yi ’Zi) =

1 otherwise.

In other words, if none of the projections of a given voxel
correspond to a point on the detector that has been identified
as being part of the projection of a vessel, then that voxel
cannot be part of the vessel and mask(x;,y,,z;)=0. For the
remaining voxels, which may be part of the vessel,
mask(x;,y;,z;)=1. The mask function provides a key con-
straint in the reconstruction process since it is used to deter-
mine regions in the volume in which the vessel cannot lie. It
is often the case that vessels comprise less than 20% of the
reconstruction volume, resulting in a correspondingly small
fraction of voxels for which the mask equals “1.” Since
binary reconstruction is only performed on these voxels,
computation time and memory requirements can both be
markedly reduced.

C. Minimization of a cost function

To reconstruct a vessel, a three-dimensional object satis-
fying the projection data must be conceived. Let us define
o(x;,y;,z;), to be an estimate of the vessel which we are
attempting to reconstruct and P as the projection operator
defined in Eq. (8). We want to minimize the expression for
the “cost”

c=>, glAp(m,u;,v;)], (14)
m,j
where
Ap(m,u;,v;)=P{o}(m,u;,v;)—p(m,u;,v;) (15)

is the difference between the original projection data and the
projection of the partial reconstruction and g can be any
even, monotonically increasing function [we use
g(Ap)=Ap?] which provides a measure of how closely a
projection of o agrees with the original projection set. Our
aim is to minimize the cost function subject to constraints
imposed by a mask function and “binarity” of the object.

D. Simulated annealing

Iterative reconstruction methods like ART?® provide solu-
tions that satisfy the projection data in a least square sense,
but we found no examples in the literature of constraints
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{plmu(x;,y;.z;,m,0),0(x;,v;.2;,m,0)]#0
and  w(x;,y;,z;,m,l)=0} (13)

such as “binarity” being introduced with these methods. Our
experience in this area suggests that when such constraints
are added, iterative approaches do not converge toward the
correct solution. Therefore, the strategy used has been to
transform the reconstruction problem into one of optimiza-
tion that will allow the introduction of the constraints.

This approach presents some new difficulties, namely, no
optimization method has been developed that guarantees the
determination of the global minimum of the cost function
without performing an exhaustive search. In our case, the
number of configurations is far too large to permit such a
search for all possible solutions. Therefore, we have adopted
the method of “simulated annealing,”?® which has yielded
optimal solutions of problems of very large scale. Figure 4
illustrates the various steps in the reconstruction process in-
cluding the simulated annealing loop with the aid of a flow
diagram.

Using this method, one creates an initial estimate of the
vessel, 0 and calculates the cost function given in Eq. (14). A
modification to ¢ is attempted, and the change in cost

Obtain projections
DOetermine the number of voxels V in the object from the projections
Determine the mask function from the projections and the ocquisiion geometry

Create an Inftial reconstruction (estimate of object having V voxels
that fit within the mask volume)

Calculate profections of the initial reconstruction
Calculate cost function
Set temperature parameter T 10 T

—» Calculate the change In cost 8C = C,,;- C, If one voxel is changed from 1 to
0 and another is changed from 0 to 1

it 9/ random0,1)) then Update - Cost function
- Reconstruction
- Projections of the reconstruction

Cailculate efficiency (no. configurations accepted / no. configuration attempted)
for the last Ny configurations accepted

If (efficiency < minimum efficiency) then sl EXlT

If equilibium not reached then 1

it 0 >T.) lower T

—

FI1G. 4. Flow chart for the reconstruction algorithm.
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6C = C o, — C 1 is then calculated. The decision to accept or
reject this change is made according to the probability func-
tion

1 if 6C<0
PrOb( 5C)= e—-ﬁC/kT if 8C=0 (16)
originally proposed by Metropolis.** This condition is imple-
mented by accepting a change in configuration if

e~ 2T > random( 0, 1], (17)

where random[0, 1] is a random number generator producing
uniformly distributed values between zero and one. Each at-
tempt to modify o is called an iteration, and each time a
modification to ¢ is performed we say that 6 has taken on a
new configuration.

If 8C is negative, the new cost is less than the previous
one indicating that the modification constitutes an improve-
ment and the new configuration is automatically accepted.
On the other hand, if &C is positive, the new configuration is
accepted with a probability that depends on the control pa-
rameter T shown in Eq. (16). If a change in configuration is
accepted, the projections and o are updated.

At the heart of this method is a thermodynamic analogy to
the way liquids crystallize as they cool, ultimately reaching a
configuration representing a state of very low energy. Ini-
tially, a large value of T is used, so that nearly all changes in
configurations are acceptable. Gradually the value of T is
reduced and states having a lower energy are favored. Al-
though this algorithm does not guarantee finding a configu-
ration providing the global minimum of the cost function, it
is less likely to become ‘“‘stuck” in a nonglobal minimum
since this approach allows the algorithm to “escape’ a local
minimum in cost with a probability determined by T and the
depth of that minimum,

The volume of the region(s) of reconstruction expressed
as the number of voxels for which the mask function equals
“17 is

M=, mask(x,,y,,z,). (18)

This volume allows 2 possible distinct binary objects. In
addition, it is possible to estimate the total volume, V, in
number of voxels occupied by the vessels, from the projec-
tion data p(m,u;,v;) using densitometry, if signals due to
structures other than vessels are removed. If V is held con-
stant, there exists

M!

m for all

(<2M VsM) (19)
distinct objects inside a volume M, determined by the mask
function, thereby reducing the number of configurations that
need to be investigated.

In order to conserve V in the reconstruction process,
changes in configurations of 0 were performed by turning
“on” a single voxel and turning “off”” another voxel both
located in the masked region. The coordinates (x .,y off »Z o)
give the position of a voxel whose value is changed from 1
to 0 while (x,,.Von.20n) is the position of a voxel whose
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value is changed from O to 1. To accelerate the calculations,
the cost function is evaluated once for the first estimate of
the binary object as shown in Eq. (14), by performing a sum
over all detector elements in all of the projections. Thereaf-
ter, the change in cost, 6C, can be evaluated by updating
only the terms in the sum that have been affected by a
change in configuration. In this way, for each iteration, dif-
ferences between the projection of the vessel and the re-
projection of the provisional estimate of the vessel are cal-
culated for at most 2/, detectors per view. In order to take
into account possible overlap in the projections of the two
voxels whose values are being changed, 8C given by Eq. (2)
has been broken into three terms

The first term, 6C;, determines the changes in cost for
pixels on the detector affected by the projection of the voxel

at (Xoff Y offZofr) ONLY.

lmax lmax

8C;=2, 2 2 {1— du(aomm,r)

m =1 s=1
—u( o, m,s),0(aosm,r) = U( o, m,s) 1}
X{g[Apn(m,u(aog,m,r),v(acm,r))
—w(agm,r)]

_g[Apn(mvu(aoff’m7r)’v(aoffvm’r))]},

where
@ ot = (Xofs Y offs Zoff) » (22)
@on= (Xon»Y on Zon)» (23)
and

Apn(m’uj’vj)zP{an}(m,uj’vj)——p(m,uj’vj) (24)

is the difference between the projection of the partial recon-
struction following the nth iteration and the original projec-
tion data. The second term, 8C,, deals with pixels affected
by the voxel located at (x,,,y on»Zon) ONLY.

[} !

8C, =2 2 2 {1- dlu(acm,r)

m r=1 s=1
—u(aoff’m9s)vv(aon’m’r)_U(aoff’m’s)]}
X{g[Apn(m?u(a0n7m’r)’v(a0n’mvr))+w(aon’m9r)]
—g[Apn(m’u(aOn’m’r)’v(aOI'l’m’r))]}’ (25)

the third term, 6C;, determines the change in cost for detec-

tors affected by the overlapping projection of both voxels if
any.
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TaBLE I. Values of the temperature parameter kT used in cooling schedules
A through D.

T
A 400 200 100 70 40 20 10 7
4 2 i 0.7 04 0.2 0.1
B 400 100 10 1 0.1
C 400 0.1
D 0.0001

lmax l

5C'§:E 2 2 {qu(aoffsm’r)

m r=1 s=1

max

_M(aon,m,S),v(aoff,m,r)—v(aon,m,s)]}
X{g[Apn(m7u(aon’m’r)’v(aonvm’r))
tw(aoff’mvr)_’_w(aon’m,s)]

_g[Apn(msu(aoff’mar)sv(aoff’m’r))]}' (26)

The decision whether to accept the new configuration is
performed according to the Metropolis algorithm described
in Sec. II D. If a change in configuration is accepted, the
estimate of the vessel, its projections, and the cost function
are updated.

E. Annealing schedule

There is no general rule that can be used to determine the
number of “temperature” steps that should be used when
performing simulated annealing. The goal is to obtain an
optimal solution in the fewest number of iterations possible.
Yet it is clear that if the system is not heated or if it is cooled
too quickly, a suboptimal solution may be obtained. On the
other hand, the use of a large number of temperature steps
where the number of iterations per step is fixed might be
computationally inefficient since a solution that is nearly as
good might have been achieved with far fewer iterations. In
Sec. III of this paper, we will investigate how the choice of
annealing schedules shown in Table I affects the reconstruc-
tion.

In order to determine when to terminate the iteration pro-
cess, for each value of T, i.e., when thermal equilibrium is
reached, an estimate of the variance, o% in the cost C, is
obtained. Following a change in T, initial estimates of o% are
large because the cost varies rapidly. As equilibrium is
reached, the cost becomes stationary and o% approaches a
stable value so that differences between consecutive esti-
mates of o decrease. The estimate is calculated for N,
accepted changes in configuration of the object and o’ is
recalculated and compared to its previous estimate. If the
current estimate is lower, an additional N, iterations are
performed and the variance is updated. We have selected a
value of N,..=5000 to provide a reliable value for o%. Even-
tually, differences between consecutive estimates are so
small that uncertainties will cause the current estimate to be
greater than the previous one. When this happens, a new T
value is selected and the process is repeated.
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F. Stopping criterion

In order to compare these measures of the effectiveness of
our approach, we must also define the criterion that will de-
termine when the reconstruction is stopped. In initial work,
the process was terminated when the fraction of misplaced
voxels had decreased to a predefined level. However, this
approach proved difficult when reconstructing from noisy
projection data, because in many instances, this threshold
value would never be attained. Therefore, the reconstruction
is stopped when the efficiency

Nacc
N att

E= (27)
which is the ratio of the number of accepted changes in con-
figurations to N, the number of changes that have been
attempted falls below some preset value. This estimate is
updated every time 10 000 iterations have been attempted in
order to obtain a reliable estimate based on the most recent
changes in configuration.

G. Simulations and performance evaluation

The accuracy of a reconstruction from a limited number
of projections is a function of numerous factors, including
the number of views and their angular distribution, the mag-
nitude of the noise in the image data and the nature of the
object being reconstructed. It is not generally possible to
obtain analytical expressions describing the effects of these
variables on the reconstruction process. As a result, simula-
tions must be performed to assess their influence. In Sec. I11,
reconstructions of computer-simulated vessel projections are
carried out to evaluate the performance of our method.

Evaluation for any particular set of imaging conditions is
performed as follows: First, a three-dimensional object is
simulated by combining simple geometrical shapes. The im-
age acquisition geometry for each projection is specified and
the various discrete cone—beam projections are computed.

The simulations described in Sec. III were performed with

d_ S
il s

i.e., the source and the detector are opposite each other with
respect to the origin of the coordinates (x,y,z). The distance
from the detector to the origin of coordinate |d| and the dis-
tance from the source of the origin of coordinates [s| are
different but constant for all

(28)

’

s
n=— (29)
ls|
views. In addition, we require that a normal to the surface of
the detector points toward the x-ray source. These constraints
were chosen to simulate acquisition about an isocenter. Un-
der these conditions, the acquisition geometry can be speci-
fied by the source and detector distance from the isocenter
and the angles ¢ and # as shown in Fig. 5.
The distance between neighboring voxels in the test ob-
ject and that between adjacent detector elements were chosen
to be identical. The reconstructed vessel and original are
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FiG. 5. The acquisition geometry used to project computer-generated binary
objects.

viewed using three-dimensional rendering software and com-
pared qualitatively. Then quantitative assessment is per-
formed by determining

i
the percentage of voxels having an incorrect value (mis-
placed voxels). Note that the denominator represents twice

MV= o(x;,y;,2:) —0(x;,¥:,2;)

X 100% (30)

2>, o(x;,¥i,2)
i
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the number of voxels having o(x;,y;,z;,)=1 (i.e., voxels that
are part of the original vessel). If the number of voxels in the
reconstructed vessel is approximately correct, and M=2V,
this estimate will have a maximum value of 100%. If
M <2V then MV will be less than 100% for the worst pos-
sible reconstruction. Normalization by the number of voxels
in the vessel is useful when comparing the reconstruction of
objects of different sizes.

In some instances, data will be plotted as a function of the
normalized cost (NC). This is calculated by dividing the cost
C as defined in Eq. (14) by the total number of detector
elements that have recorded signal due to vessels in each
view.

Iil. RESULTS AND DISCUSSION

For the purpose of this paper, two simulated discrete bi-
nary objects were generated, a sphere having a diameter of
40 voxels cantered on the origin of coordinate x,y,z and a
branched vessel exhibiting a stenosis. The principal branch
of the vessel has a diameter of 28 voxels. Acquisitions were
performed with |s|=4000 voxels and |[d|=115 voxels in all
cases.

A. Minimization of the cost function

Figure 6 shows both the normalized cost (NC) and the
percentage of misplaced voxels (MV) as a function of the
number of iterations and temperature parameter 7' for a
spherical object reconstructed from 3 views acquired at

a)

0.1 1 10 100 10* 10 10 10 10
T lterations

5 6 7

MV
-]

0.1 1 10 100

1 "

0 . .
10* 10° 10° 107 108

Iterations

Fig. 6. Minimization of the cost function using simulated annealing. Graphs (a) and (b) show the decrease of the normalized cost (NC) and % misplaced
voxels (MV) as a function the temperature parameter T. Graphs (c) and (d) show results of the same simulation as the number of attempted configurations is

increased. Values of T are shown for selected points in graphs (c) and (d).
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FiG. 7. Graphs depicting the MV as a function of the number of attempted
configurations for 4 different cooling schedules described in Table I.

angles (¢,6) of (90,0), (90,60), and (90,120). The points on
the graphs were obtained when equilibrium was obtained at a
particular value of the temperature parameter 7, using cool-
ing schedule A shown in Table 1. Figure 6(a) shows that as
the temperature is lowered, the NC decreases, indicating im-
proved agreement between the reconstructed image and the
projection data. The data also suggest that there is an upper
limit of the cost function, so that increasing the value of T
beyond 400 should have little effect.

As the cost is minimized (i.e., T is reduced), there is a
corresponding decrease in MV as shown in Fig. 6(b). The
two curves are similar except that the slope in the “toe”
portion of the curve is steeper for MV. The shape of the MV
curve suggests that the reconstruction process could have
continued with lower T values in order to further improve
the accuracy of our results. Since the annealing process in-
volves a number of iterations at each temperature step, val-
ues of NC and MV can also be plotted as a function of the
cumulative number of iterations performed over all previous
and current temperature steps. This is illustrated in Figs. 6(c)
and 6(d). Figure 6(d) also shows that as T is lowered, the
number of iterations performed at each temperature step be-
comes prohibitively large as revealed by the relative dis-
tances between successive points.
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FIG. 8. The percentage of misplaced voxels in (a) and the normalized cost in
(b) as a function of T for various SNR values.

B. Annealing schedule

Figure 7 shows how the various annealing schedules de-
scribed in Table I affect the reconstruction of a sphere using
the same acquisition geometry as in the previous simulations.
Schedules A, B, and C have the same initial and final values
of T, but vary in the number of temperature steps. In all three
schedules, the value of T is raised to an initial value to ‘“‘ex-
cite” the system. Schedules A and B yield similar results. In
schedule C, the system was quenched through a sudden low-
ering of the value T, while in schedule D, the initial value of
T was not raised but rather lowered at once. These results
show that when the temperature is not raised to a high value
(as in D) or the system is cooled too quickly (C), the solution
obtained is suboptimal as expected. Also, when many tem-
perature steps are used, there is no significant increase in the
time required to perform the reconstruction. This occurs be-

TabLE II. Description of geometry used for reconstructions performed with 2, 3, 4, 6, and 9 views.

View
number
1 2 3 4 5 6 7 8 9
No. 2 0°90° 90°90°
of 3 0°90° 60°90° 120°,90° X
views 4 0°90° 45°90° 90°90° 135°,90°
6 0°90° 30°90° 60°90° 90°90° 120°90° 150°,90°
9 0°90° 20°90° 40°90° 60°90° 80°90° 100°90° 120°,90° 140°90° 160°90°
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FIG. 9. Graph depicting the percentage of misplaced voxels as a function of
the number of views used for various SNR values for (a) a spherical object
and (b) a branched vessel.

cause as the difference in temperature between two consecu-
tive steps is reduced, the number of iterations required to
reach equilibrium is aiso lowered. Therefore, it is always
better to use a large number of temperature steps and mini-
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Fic. 10. Projections of a simulated branched vessel exhibiting a stenosis for
(6,6)=(0,90), (60,90), and (120,90).

mize the chances of becoming trapped in a shallow mini-
mum.

C. Effect of noise on the annealing process

Gaussian white noise having a spatially independent stan-
dard deviation was added to each projection to investigate
the effect of signal degradation on the reconstruction. Here,
we define the signal to noise ratio (SNR) as the maximum
value of p(m,u,v) V m,u,v divided by the standard devia-
tion of the gaussian distribution. Figure 8 shows both the NC
and MV vs T for different SNR when reconstructing a sphere
using the acquisition geometry previously described. These
plots show that as the SNR decreases, both the NC and MV

Number of Views

2 3
He o0 O
00 00 00 00
@0 00 00 00
0 00 00 00
20 00 00 00

Xy vz
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eNS
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4

6
® 00

Xy yz Xy Yz

Fic. 11. Diagram showing a cross section through the reconstruction of a sphere in both the xy and yz planes for different SNR and number of views as well
as cross sections through the mask function in those same planes (top row). The leftmost column shows projections with different SNR from which the

reconstructions were performed.
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FIG. 12. Reconstructions of the branched vessel. For each SNR and number of views, two cross sections through the xy plane are shown. Two cress sections

through the original object are shown in the upper left corner.

curves are shifted toward larger values. Furthermore, as the
noise is increased, the temperature above which the curve
ceases to be flat increases, so that expending more comput-
ing time provides no further improvement in the accuracy of
the reconstruction. As a result, the reconstruction process can
be safely interrupted sooner in the presence of noise, since
little is gained by proceeding to lower values of 7.

D. Effect of the number of views on the reconstruction
process

The performance of the algorithm was investigated as a
function of noise and the number of views. The acquisition

3 Views

Criginall @ ® ®
v 0 ¥

Mask

e »

Reconstruction ﬁ

»
v

L
“

Y LE

LI

Difference

4 Views

geometry for the different number of views used in each
simulation is described in Table II. Figure 9(a) shows MV for
a sphere as a function of the number of views for different
SNR values while Fig. 9(b) gives similar results for a
branched vessel with a stenosis. Figure 10 illustrates three
projections of this branched vessel. These images show a
large vessel with a smaller branch. The narrowing of the
large vessel near the bifurcation is evident.

Figure 11 illustrates reconstructions of central sections of
the sphere for different number of views and SNR. The first
column shows a projection of the object for various SNR
values. The top row demonstrates a cross section of the mask
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FIG. 13. Diagram showing the most poorly reconstructed slices in the plane of the vessel. Two slices are shown for each number of views. The left slices have
more misplaced voxels, while those on the right have a greater fraction of misplaced voxels when normalized by the number of voxels in that slice. In each
case, the original cross section, the reconstruction, and their difference are shown.
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Fic. 14. Reconstructed cross sections in the xy plane of a branched vessel
for various values of the continuity parameter A.

function in both the xy and yz plane for different numbers of
views. Cross sections of the reconstructed object in both the
xy and yz plane are shown for each SNR and number of
views. Figure 11 also reveals that reconstructions in the yz
planes are superior to those in the xy plane. This is due to the
acquisition geometry used in which all views are acquired by
rotating the source in the xy plane. Figure 12 gives similar
results for two cross sections in the xy plane through the
branching vessel depicted in Fig. 10. These images indicate
that better results are achieved when reconstructing a sphere
than a more intricate object.

The figure of merit, MV, used to measure the performance
of our method so far, was calculated over the whole volume.
In order to get a better idea of how the accuracy of the
reconstruction will vary from slice to slice, the most poorly
reconstructed slices in the plane of the vessel were deter-
mined and are depicted in Fig. 13. Two slices are shown for
each number of views. Of the two, the leftmost slice has the
greater absolute number of misplaced voxels while the slice
on the right has the greater fraction of misplaced voxels nor-
malized by the number of voxels in that slice. This second
estimate was calculated because the first estimate is likely to
be biased toward slices that have many voxels that are part of
the vessel. In each case, the true cross section, the recon-
struction and their difference are shown. In the difference

1,1,1

)

Imn=-—1

Contogelx;,y;,2:) = § "
i

\ 0 otherwise
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image, voxels are nonzero only if there is a disagreement
between the original and the reconstruction. All reconstruc-
tions were performed from projection data having an SNR of
50. The worst slices were located near the ends of the vessels
when reconstructing from three or four views. In these slices,
the mask function does not constrain the reconstruction very
well. Therefore, these slices were excluded from our search
for the worst slice in favor of slices that were not recon-
structed well due to their more complex nature {stenosis,
bifurcations, closely spaced vessels). All of the worst slices
shown in Fig. 13 are beyond the bifurcation where the larger
branch exhibits a stenosis.

E. Continuity parameter

If a blood vessel is represented as a set of discrete voxels,
one notices that in general, a surface can be defined inside of
which all voxels will be part of the vessel. As a result, most
voxels will have the same values as their closest neighbors
except for voxels lying near the lumen boundary. Therefore,
it seems reasonable to disfavor a change in configuration that
causes a voxel located well inside the lumen of the vessel to
change its value to “0” when all of its neighbors have a
value of “1.” We have begun to investigate whether the ad-
dition of a continuity to disfavor such changes can improve
the reconstruction. Under such conditions, the expression for
the change in cost can be written as

6C= 5C1 + 5C2+ 5C3 + x[contoﬁ(-xoffvyoffvzoff)

+ ContOH(xOIUyOn’ZOn) ] ‘ (3 1)

The variable \ is a parameter that weighs the contribution of
the continuity functions. The continuity term increases the
value of 8C when a change in configuration that fragments
the object is attempted, making it less likely that such a
modification will be accepted.

The function

o(x;+1Ax,y,+mAy,z;+nlAz)—o(x;,y;,z;)— 18

(32)

5(xl'+ le,yi+mAy,Zi+nAz)—6(xi ’yi in)Z 1 8

has a minimum value of 0 when fewer than 19 of the 26 nearest neighbors have a value of “1” (i.e., more than 7 have a value
of “0”) and increases to a maximum value of 8 when all 26 closest voxels have a value of “1.” The variables Ax, Ay, Az
are the dimensions of the voxels. This function is used to prevent a voxel within the lumen from being turned off. The function

r 1,1,1

8- 2
imn=—1
Conton(xi 5Yi 9zi) = J . e
if 2
I,mn=—1
\ 0 otherwise
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takes on a value of 0 when fewer than 19 of the 26 nearest
neighbors have a value of “0” and increases to a maximum
value of 8 when all 26 closest voxels have a value of ““0.”
This function increases dC when one attempts to turn on a
voxel far from the lumen.

Figure 14 illustrates the reconstruction of a branched ves-
sel from 3 projections having a SNR of 50, for different
values of the parameter A (A=0 indicates that the continuity
correction is not applied). The acquisition geometry can be
found in Table I. As A is increased, we note that the recon-
struction improves. Our results show that significant reduc-
tions in the MV from 9% to 4% can be achieved in this
instance. However, the way in which the continuity function
was defined is based on results from a limited number of
simulations and is somewhat arbitrary. Further work will be
required to determine if our approach is an effective way to
impose continuity conditions. A better strategy than just add-
ing a new term to the cost function might be to restrict the
initial attempts at configuration changes to the lumen bound-
ary, reducing the number of configurations that are at-
tempted, and possibly reducing the time required to perform
the reconstruction. The results obtained thus far warrant fur-
ther investigation.

IV. CONCLUSION

Our results demonstrate that it is possible to reconstruct a
simulated branched vessel exhibiting a stenosis with as few
as 4% of voxels misplaced using three views with a SNR
>50. This performance is realized through the introduction
of “binarity” and continuity constraints into the reconstruc-
tion. These constraints could not be introduced into an itera-
tive reconstruction method and as a result the reconstruction
process was treated as a large scale minimization problem
and solved using simulated annealing. This approach results
in a large number of computations so that the reconstruction
of the branched vessel shown in this paper required several
hours.

Since our method was verified by creating simulated
three-dimensional objects {mathematical abstractions) from
which projections were calculated, no subtractions of signals
due to structures other than blood vessels were necessary. In
order to apply this method to real angiographic projections, it
will be necessary to isolate vessels in each projection and
perform other corrections (geometric distortions, misregistra-
tion). These issues will be addressed in a future paper where
this method will be applied to iodinated vessel phantoms.
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