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Adaptive Averaging for Improved SNR in Real-Time
Coronary Artery MRI

Marshall S. Sussman*, Normand Robert, and Graham A. Wright

Abstract—A technique has been developed for combining
a series of low signal-to-noise ratio (SNR) real-time magnetic
resonance (MR) images to produce composite images with high
SNR and minimal artifact in the presence of motion. The main
challenge is identifying a set of real-time images with sufficiently
small systematic differences to avoid introducing significant
artifact into the composite image. To accomplish this task, one
must: 1) identify images identical within the limits of noise;
2) detect systematic errors within such images with sufficient
sensitivity. These steps are achieved by evaluating the correlation
coefficient (CC) between regions in prospective images and a
template containing the anatomy of interest. Images identical
within noise are selected by comparing the measured CC values to
the theoretical distribution expected due to noise. Sensitivity for
systematic error depends on the SNR of the CC(=SNRCC ),
which in turn depends on the noise, and the template size and
structure. By varying the template size, SNRCC may be
altered. Experiments on phantoms and coronary artery images
demonstrate that the SNRCC necessary to avoid introducing
significant artifact varies with the target composite SNR. The fu-
ture potential of this technique is demonstrated on high-resolution
( 0 9 mm), reduced field-of-view real-time coronary images.

Index Terms—Adaptive averaging, real-time MRI, reduced
field-of-view, SNR, template matching.

I. INTRODUCTION

REAL-TIME magnetic resonance (MR) can be used to vi-
sualize directly the coronary arteries in a manner that is

robust in patient populations, where arrhythmias and/or breath
holding difficulties often confound nonreal-time methods [1].
Additionally, unlike motion compensation methods, real-time
MR is not dependent on a precise characterization of the com-
plex coronary-diaphragm-electrocardiogram relationships [2],
[3]. However, the high temporal resolution of real-time MR con-
strains the achievable signal-to-noise ratio (SNR) and/or spatial
resolution. Recent developments in faster gradients and pulse
sequence design [4]–[8], have begun to remove some constraints
on the achievable spatial resolution. However, reduced SNR re-
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mains an impediment to the production of high-quality real-time
coronary images.

Following (or during) a real-time acquisition, SNR could be
improved by combining independent images to form a com-
posite image. The SNR would be increased by a factor of
in this case. However, artifact may be introduced into the com-
posite image if significant systematic differences exist between
the component real-time images. Motion between the images
would be one major source of such differences. To ensure min-
imal artifact in the composite image, an appropriate choice of
component images is, therefore, essential.

One component image selection method proposed by Hardy
et al. [6] in their “adaptive averaging” technique is template
matching. A variety of template matching methods (cross-cor-
relation, covariance, correlation coefficient [9]) were used to
quantify the similarity between a template containing the struc-
ture of interest (i.e., the coronary artery) and equally sized re-
gions in other images. Component images were selected based
on maximal similarity to the template.

Using Hardy’s general strategy, a component image selection
algorithm using correlation coefficient template matching was
introduced in a previous study by our group in the context of
variable-density spiral imaging [8]. In the present study, a de-
tailed theoretical and experimental analysis of this component
image selection algorithm in the context of image combination
is performed. In particular, factors affecting the quality of the
component images selected by the algorithm are investigated.
The utility of this analysis, and the effectiveness of the algo-
rithm in general are then demonstrated through the application
of image combination to high-resolution ( mm), reduced
field of view (FOV), real-time coronary artery images.

II. THEORY

The theory section is divided into three components: The first
reviews the concepts behind image combination; the second
describes our component image selection algorithm. Although
some of the earlier material in this section has been discussed
previously [8], [10], we include it here for clarity and complete-
ness. The third section provides a detailed analysis of the the fac-
tors affecting the component image selection algorithm’s ability
to detect systematic errors.

A. Image Combination

A composite image is generated by adding
component images together

(1)
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where the division by n is used for normalization. If the set of
component images satisfy

(2)

where is some underlying common structure, and
represents a noise term that is white, additive

and Gaussian with zero mean and standard deviation ,
then the resulting composite image and SNR will be given,
respectively, by [11]

(3)

(4)

(5)

where is the SNR in the individual
component images.

The major challenge in performing image combination is
identifying an appropriate set of component images. Unfortu-
nately, identifying images that are identical except for noise
[i.e., (2)) is generally not possible in most practical situations.
In particular, if noisy component images are selected based on
a comparison to other noisy images (as in the present case),
the best that can be accomplished is to identify a set of images
that are identical within the limits of noise. This distinction is
important because it does not preclude the possibility of noise
masking the presence of small systematic differences
between the selected component images

where (6)

The presence of small systematic errors potentially has a dele-
terious effect on the resulting composite image because, unlike
noise, the systematic error level is not necessarily reduced fol-
lowing combination [11]. To generate a composite image with
improved SNR without introducing significant artifact, the com-
ponent image selection algorithm must, therefore:

1) identify a set of images identical within the limits of
noise;

2) detect systematic errors with sufficient sensitivity so as to
avoid introducing significant artifact into the composite
images.

Provided sufficient sensitivity can be achieved, image combina-
tion can increase SNR to any level.

B. Identifying Component Images Identical Within the Limits
of Noise

This section reviews our method for using CC template
matching to identify a set of component images with regions
identical within the limits of noise.

Template matching begins with the extraction, from some
initial image, of a rectangular template

of size pixels containing the structure of
interest (i.e., the coronary artery). The template is compared to
equally sized regions at every location in a subsequent
image by calculating the correlation coefficient

(7)

where is an region in the image located
at , and are its mean and standard devia-
tion (similarly for ). At the location of the maximum CC

Fig. 1. Component image selection. The curve represents the Gaussian PDF
of the CC values under Fisher transformation. In the ideal case, the mean
and standard deviation of the PDF would be given by (8), and (9), respectively.
A set of component images identical within the limits of CC noise would
be obtained when the standard deviation of their Fisher-transformed CC

values equals � . In practice, approximations inherent in the Fisher transform
lead to uncertainty in the true standard deviation of the PDF. To account for
this uncertainty, the modified termination condition (12) is used. However, if
the true standard deviation is greater than 0:56� , the range of CC values
in the selected component images would occupy only the upper range of the
PDF (e.g., the shaded region under the curve). In this case, the CC values
would no longer be completely random samples from the distribution. Instead,
they would be ordered in the sense that only the largest values in the distribution
would be used.

value, the image bears the greatest similarity to the template.
The maximum CC value itself is defined as .

To identify a set of component images identical within
the limits of noise, one must analyze the proba-
bility density function (PDF). Using Fisher’s z-transform,

, the PDF can be approximated
by a Gaussian distribution [10], [12] with mean and standard
deviation given, respectively, by

(8)

(9)

where the expected value, , can be calculated
directly [10] as

(10)

A set of component images identical within the limits of
noise will be one whose statistics are given by (8), (9). In
practice, the component image selection algorithm uses an ap-
proach based on as follows [8]: After selection of a template,
an initial images are acquired, with CC template matching ap-
plied to all. The standard deviation of the Fisher-transformed

values is then calculated. If ,
data acquisition continues, with the CC algorithm applied to
each newly acquired image. If the value associated with
the new image exceeds the smallest value in the current

-image set, it replaces the image associated with that smallest
value. The value is then re-calculated on the

new set. The entire procedure iterates until

(11)
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Fig. 2. Image combination (n = 25) of the left coronary artery (coronal-oblique view). (a) Template of size 32� 32 pixels containing the left main coronary
artery (white arrow) extracted from a low-SNR image. (b) Statistics of the CC values of the component images as a function of time. (c)–(f) Composite images
reconstructed at (c) 5.9 s (� =� = 2:5), (d) 11.2 s (� =� = 2:0), (e) 26.7 s (� =� = 1:0), and (f) the termination point at 81.1 s. The
images in (c)-(f) correspond to the points labeled by the ’s in (b). Note the increasing sharpness of the artery [white arrowheads in (c)] and the increasing border
delineation [black arrowheads in (c)] in the progression from (c) to (f).

This procedure is similar to the Diminishing Variance algorithm
of Sachs et al. [13], except the variance of values rather
than variance of displacement is minimized.

The component image selection algorithm requires one mod-
ification due to inadequacies of the Fisher transform approx-
imation: In addition to template size, the standard deviation of

also has a slight dependence on the structure of the tem-
plate [10]. Over different templates, the actual standard devi-
ation was found empirically to differ from (9) by %

% [10]. To account for this
deviation, the algorithm termination condition is modified to the
98% confidence level % % for the

standard deviation

(12)

Note that (12) differs from the previous implementation of our
component image selection algorithm [10], where a value of

was used based on a less rigorous quantitative analysis.
One consequence of (12) that has not been mentioned before is
that the values of the selected component images may
not be completely random samples from the PDF, but
may instead have an ordering (see Fig. 1). This could affect the
noise distribution within the component images [14]. For ex-
ample, if the true standard deviation is significantly larger than

, there may be a correlation between both the anatom-
ical structure and the noise in the template and component im-
ages. If significant noise correlation occurs, the SNR in the com-
posite image may be reduced. Note that these problems could be

avoided if one were to calculate the PDF numerically.
However, this would have to be done separately for each indi-
vidual template.

One final issue that must be addressed is that, since tem-
plate matching searches every location in the two-dimensional
(2-D) image for the optimal match, rigid-body displacements
may exist between the selected component images. To avoid
blurring in the composite image [15], these translations, which
are determined from the locations, are removed before
combination.

An example image combination is displayed in Fig. 2. Early
in the scan, Fig. 2(b) indicates that , implying
significant systematic differences between the component
images. A composite image generated at an early time point
[Fig. 2(c)] exhibits improved SNR, but significant artifact
(e.g., vessel blurring and poor border delineation). As the scan
progresses, decreases, implying increased similarity
among the component images. This increased similarity is
reflected in improved composite image quality [Fig. 2(d), (e)].
After 81s, the termination point (12) is reached [Fig. 2(f)].

C. Sensitivity for the Detection of Systematic Errors

The algorithm described in the previous section does not
preclude the presence of small systematic differences among
the images [see (6)]. To avoid introducing significant artifact
into the composite image, such differences must be sufficiently
small. The ability of CC template matching to detect systematic
errors between an image and template will depend on the
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Fig. 3. The meaning of sensitivity for systematic error detection. The solid
curve represents the distribution of Fisher-transformedCC values expected
when CC template matching is applied to an ensemble of images identical
except for noise. The shape of the distribution is Gaussian, with mean �
and standard deviation � . The thin dotted line represents an example of a
Fisher-transformed CC value (� � ) that could result if CC template
matching is applied to an image with a small amount of systematic error.
Since this value lies in the range expected due to random noise, the template
associated with this particular PDF would not be sensitive for the detection of
this level of systematic error. On the other hand, a template with a distribution
of Fisher-transformed CC values described by the dashed curve (with
mean � > � , and standard deviation � < � ) would be capable of
detecting this level of systematic error. From this figure, it can be inferred
that one possible parameter for quantifying the sensitivity for systematic error
detection could be the SNR value (=� =� ) of the template.

PDF. Specifically, a given level of systematic error
will be detected only if its associated value can be
distinguished from the range of values expected due
to random noise (see Fig. 3). For a complete description of
systematic error detection, an analysis of both the CC algorithm
and the nature of the systematic error is necessary. However,
based on the description given in Fig. 3, it is hypothesized
that a simpler measure that may be used to describe the major
features of sensitivity for systematic error detection is the
signal-to-noise ratio (SNR) of

(13)

It is expected that only a template with sufficiently large
will detect systematic errors with enough sensi-

tivity to avoid introducing significant artifact into the composite
image.

To explore the relationship between sensitivity for systematic
error detection and , a method must be developed for
varying . Equation (13) indicates that de-
pends on the noise, and the template structure (through the
term) and size. Among these parameters, will be fixed by
the nature of the real-time acquisition, and the ability to manipu-
late (for example, by changing template location) is limited
by the requirement that the template cover the anatomy of in-

terest. The template size, on the other hand, could potentially
be varied over a broad range. To prevent a reduction in the total
anatomical area covered, a template grid [16] is used as template
size is reduced [see Fig. 4(a)–(c)]. The value of each
grid element is assessed independently for each image, and the
component image selection algorithm is applied to each grid el-
ement separately. Different regions of different images are then
combined. In this manner, template grids potentially allow one
to vary the sensitivity for systematic error detection over a broad
range, without a reduction in the total anatomical coverage.

One difficulty in comparing images generated from different
template sizes is that, since larger templates cover more and,
therefore, different, anatomy than individual smaller templates
(although the same total area is covered with the grid of smaller
templates), it is not immediately obvious that one can equate
directly the values between different template sizes.
To gain insight into the circumstances under which the mono-
tonic correspondence between sensitivity for systematic error
detection and template size will hold, consider the following
scenario: Let and represent two adjacent template ele-
ments, and let be a single larger template that encompasses
both and (see Fig. 5). The validity of the correspondence
will depend on the relationship between the anatomy in and

. There will be three possible such relationships.
1) and are completely independent: In this case,

the anatomy in will convey no information about
the anatomy in . There will, thus, be no increase in
sensitivity for systematic error detection using the larger
template , even if it has a larger value than
both and .

2) and are completely dependent: This implies that both
and convey equivalent information. Therefore, if the

is higher in than both and , greater
sensitivity for systematic error detection will result by
using .

3) and are partially dependent: This scenario will fall
into the middle range of the above two cases. The degree
of improvement in sensitivity for systematic error detec-
tion associated with using the larger template will be de-
termined by the degree of dependence.

The utility of varying template size to alter will
be dictated by the relative dependence of different regions of the
anatomy contained within the template. In general, dependence
will be more likely if the anatomy in the different regions are
connected physically. In this study, since all templates are con-
tained within the heart, it will be assumed that a strong depen-
dence exists. The validity of this assumption will be examined in
the Discussion section. With this assumption, the sensitivity for
systematic error detection (and the value) associated
with any subregion of a template can be equated with the sensi-
tivity for systematic error detection (and the value)
of the template as a whole [see Fig. 5(iii) and (iv)]. This allows
one to compare directly the values associated with
different template sizes.

III. METHODS AND RESULTS

The goal of the image combination algorithm is to generate a
composite image with improved SNR, without the introduction
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Fig. 4. Image combination on the right coronary artery using the different template sizes. Templates of size (a) 32� 32 pixels, (b) 2� 2 grid of 16� 16 pixels,
and (c) 4� 4 grid of 8� 8 pixels extracted from a low-SNR real-time image. The right coronary artery is indicated by the arrow in (a). (d), (e), and (f) Composite
images generated using the templates in (a), (b), and (c), respectively. (g), (h), and (i) The SNR values in the regions corresponding to the template elements
in (a), (b), and (c), respectively. Composite image quality is poorest at the lowest SNR values.

Fig. 5. The utility of varying template size to alter the SNR value. (i) Single and (ii) 1� 2 grid template covering the same total area. Due to its larger
size, template C will have a larger SNR value (=SNR ) than either A (=SNR ) or B (=SNR ). However, if the anatomy in A
and B are completely independent of each other (for example, if they cover entirely different anatomical structures), then the larger SNR value of C will
not translate into a greater sensitivity for systematic error detection. On the other hand, if A and B are dependent, then the larger SNR value of C will
result in a greater sensitivity for systematic error detection. Since all templates in the present study are contained completely within the same anatomical structure
(i.e., the heart), it will be assumed that the latter condition holds. Under these circumstances, when using the larger template C , the sensitivity for systematic error
detection in any subregion will be described by SNR , as illustrated in the examples of (iii), (iv). This allows one to compare directly the SNR
values associated with different template sizes.

of significant artifact. To evaluate the effectiveness of the algo-
rithm in achieving this goal, we need to 1) characterize the im-
provement in image quality provided by the algorithm, 2) verify
that the algorithm is capable of identifying a set of component
images identical within the limits of noise in vivo, and
3) characterize the algorithm’s sensitivity for the detection of
systematic errors.

A. Characterizing the Improvement in Image Quality
Following Combination

The first experiment characterizes the improvement in image
quality provided by the image combination algorithm. If a
set of component images could be selected randomly from
an ensemble of images identical except for noise, this result

would be trivial (i.e., SNR increase of ). However, as
discussed in the Theory section, the algorithm for selecting
component images may result in an ordering of the
values, which could affect the properties of the component
images. The first experiment assesses the significance of
this effect by evaluating the results of image combination
in the ideal case of real-time images of static phantoms.
Each image was acquired using three spiral interleaves
( ms, mm,

cm, , and ms) [17].
Images were acquired continuously for a duration of 60 s.

To evaluate the properties of the component images, the
statistics of the values (i.e., the mean and standard
deviation) were compared to the values expected when CC
template matching is applied to an ensemble of images identical
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Fig. 6. Typical results of a phantom image combination. (a) Low-SNR real-time component image. The location of the template is indicated by the white rectangle.
(b) High-SNR composite image (n = 25). (c) “Noise-free” gold standard composite image (n = 1015). Histogram of the template region of the difference image
formed by subtracting (c) from (b). The mean (� ) and standard deviation (� ) of the noise distribution were calculated from the Gaussian fit (grey curve)
to the histogram.

except for noise. Since the standard deviation of the selected
component images is equal by definition to (12), one need only
evaluate the mean value. This was accomplished by
comparing the noise calculated from (10) to the
true noise value . The true noise value was determined
by calculating the standard deviation of the region obtained
by subtracting the template from a “noise-free” gold standard
image. These latter images were obtained by adding together
every image in the real-time series ( images). To evaluate
the SNR and noise characteristics of the composite images, a
Gaussian curve was fitted to the difference image obtained from
the subtraction of the composite and “noise-free” gold standard
images (see Fig. 6). To quantify the experimental uncertainty,
the procedure was repeated five times using different phantoms
and imaging orientations.

Results are listed in Table I. The second column indicates
a significant discrepancy between and the true noise
value. This implies a bias in the properties of the selected com-
ponent images. This bias is likely due to ordering. This
hypothesis is supported by the data in the third column which
indicates that, if component images are selected completely ran-
domly from the entire series of static phantom images rather
than by the algorithm, the discrepancy disappears. In terms of
the composite image properties, SNR was found to increase by

for 25 component images), and the noise

was found to have a mean value close to zero
. The shape of the noise distribution was Gaussian. Taken

together, these results imply that, while the component image
properties are slightly biased by ordering, the resulting
composite image properties are largely unaffected.

B. Identifying Component Images In Vivo

The success of the image combination algorithm in vivo de-
pends on its ability to identify a set of component images iden-
tical within the limits of noise, from within a larger pool
of images that are not. To evaluate whether the algorithm is ca-
pable of accomplishing this task, the statistics of the
values must be evaluated as in the phantom experiments. How-
ever, unlike the phantom experiments, independent noise mea-
surements could not be performed directly in the template re-
gion (since there is no noise-free image available for subtrac-
tion). Instead, independent noise measurements were made in
the background regions of the template image .

The real-time coronary images were acquired with the same
parameters as the phantom experiments, with the exception of
the use of a 10 , rather than a 30 flip angle (this lowered the
component image SNR in order to more readily demonstrate
the improvement provided by image combination). Image
selection was performed using templates of 32 32 pixels,
2 2 grids of 16 16 pixels, and 4 4 grids of 8 8 pixels.
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TABLE I
PROPERTIES OF THE COMPONENT IMAGES

Columns two through four list the data for the phantom experiments, and the last column is the coronary artery data. The second and third columns list the
discrepancy between the noise calculated from the mean CC values and (10) (� ), and the “true” noise value in the template region (� ) calculated
by subtraction of the noise-free gold standard images (see Fig. 6). The second column used component images selected by the algorithm, and the third column
used a completely random component image selection from the entire real-time series of static phantom images. The fourth column lists the discrepancy between
� and an independent noise measurement in the background (� ). The last column is the same as the fourth, but calculated on the in vivo coronary
data. All data are presented as the mean � standard error.

Twenty-five component images were used to ensure an ac-
ceptable composite [18], given that the component
images had – . The procedure was performed on
eight individuals.

Results are listed in the last column of Table I. The data
indicate a significant discrepancy between noise calculated
from (10) and independent noise measurements in
the background . As in the phantom experiments,
part of this discrepancy is due to ordering (compare
with the second column of Table I). The remaining discrepancy
is likely due to bias in the background noise measurement.
This hypothesis is supported by the fourth column of Table I,
which indicates that a similar discrepancy is observed in the
phantom data when is compared to , rather
than the true noise value calculated in the template region. The
origin of this bias has not been investigated thoroughly, but
it may be due to incomplete compensation for the effects of
gridding in the spiral reconstruction [19]. This could lead to
different weightings in different parts of the image. As a result,
the noise measured in one part of the image may not reflect the
noise in another. In any event, since the effect is observed both
in the ideal phantomdata and in vivo, this implies that the in
vivo data behaves as expected. With the source of the observed
discrepancies largely accounted for, the data indicates that the
algorithm is capable of identifying a set of component images
identical within the limits of noise in vivo.

C. Characterizing Sensitivity for Systematic Error Detection

The third set of experiments explores the hypothesis that sen-
sitivity for systematic error detection varies with the
value of the template. To illustrate this relationship qualitatively,
Fig. 4 displays typical results from a coronary image combina-
tion using the different template sizes. In comparison with the
low-SNR templates [Fig. 4(a), (b), (c)], all composite images

[Fig. 4(d), (e), (f)] provide a significant improvement in SNR.
However, the composite image generated with the 4 4 tem-
plate grid [Fig. 4(f)] exhibits obvious artifacts. By observing
the comparatively lower values associated with the
8 8 template grid elements [compare Fig. 4(g), (h), (i)], it
can be seen that this result supports the hypothesis of a mono-
tonic correspondence between systematic error detection and

. In fact, even within Fig. 4(f), local variations in
image quality appear to follow local variations in of
corresponding template grid elements. This variation is respon-
sible for the observed “tiling” effect. Fig. 7 provides a second
example of image combination. In this case, image quality is de-
graded in the region of low in the composite image
generated with the 16 16 template elements [Fig. 7(e)].

The above examples provide qualitative support for the hy-
pothesized relationship between sensitivity for systematic error
detection and . Unfortunately, an absolute quanti-
tative characterization will generally not be possible since the
specific nature of the systematic error is unknown. Instead, the
strategy taken in this study is to evaluate the composite images
using three different quantitative methods, and then to determine
if the observed behavior is consistent with the hypothesis that
systematic error detection increases with .

1) Assessing Sensitivity for Systematic Error Detection by
Comparing the Composite Images to High-SNR Gold Stan-
dards: The first two methods assess sensitivity for systematic
error detection by evaluating composite image quality relative
to high-SNR gold standards. Such gold-standard images (see
Fig. 7(f) for an example) were obtained by performing a
real-time acquisition using a 30 flip angle (versus 10 used to
acquire the low-SNR component images). In the first method,
image quality was assessed by evaluating the similarity between
the composite and high-SNR gold standard images through
CC template matching. The value resulting from this
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Fig. 7. Image combination on the left anterior descending (LAD) coronary artery using different template sizes. Templates of size (a) 32� 32 pixels and (b) 2� 2
grid of 16� 16 pixels extracted from (c) a low-SNR image. The arrows in (a) and (c) indicate the LAD. The numbers in (a) and (b) indicate the SNR values.
(d), (e) Composite images generated with the templates in (a) and (b), respectively. (f) High-SNR gold-standard image [acquired with a 30 flip angle, versus 10 for
the low-SNR component images used to generate (d) and (e)]. (g) The CC values calculated by applying CC template matching between corresponding
8� 8 pixel regions in (d), (e), and (h) The discrepancy in CC values from theoretical predictions (=(CC � hCC i)=(� ). To
facilitate comparison between the different values, the data in (h) is normalized by the standard deviation of CC for an 8� 8 pixel region (=� ). (i)
The SNR values associated with each CC value in (h) (compare with the values in (b), and refer to Fig. 5).

calculation quantified the similarity. In the
second method, image quality was assessed by comparing the
vessel edge positions [20] in the composite and high-SNR
gold standard images. If the hypothesized relationship between
systematic error detection and is true, then one
expects the similarity to increase and the discrepancy in vessel
edge position to decrease with larger template
values.

Quantitative results for the experiments are listed in Table II.
The data indicate that similarity increases, and the discrepancy
in vessel edge position decreases with larger template size. Note,
however, that the discrepancies in vessel edge position are rel-
atively small, implying that all templates types provide a rea-
sonable depiction of the course of the coronary artery. By ex-
amining the values in the fourth column, it can be
seen that these results reflect the improvement in image quality
expected if sensitivity for systematic error detection varies with

.
2) Assessing Sensitivity for Systematic Error Detection

Through Comparison of the Different Composite Image
Types: The third method for assessing sensitivity for system-
atic error detection compares the similarity between composite
images generated by the different template types. Specifically,
composite images generated by the template grids (hereafter
referred to as and ) are compared to
the composite images generated from the 32 32 templates

(hereafter referred to as ). Similarity is evaluated
by applying CC template matching between and

. To more easily elucidate changes in
similarity with , the template match is performed
between every corresponding 8 8 region (i.e., the smallest
template element used in the experiments) in and

(see Fig. 7(g), (h), and recall that the
value of any subregion of a template is assumed to

be equal to the value of the template as a whole,
as indicated in Fig. 5). The value resulting from this
calculation quantifies the similarity. If the
hypothesized relationship between systematic error detection
and is true, then the similarity between any pair
of 8 8 regions in composite images will increase as the

value associated with either region increases.
However, since the 32 32 templates possess nearly uniformly
larger values than the template grids (see Table II),
the relative similarity is expected to be determined primarily
by the sensitivity for systematic error detection of the template
grids. Therefore, if the hypothesis is true, one expects an
increase in similarity with larger template grid
values.

Fig. 8 plots the relationship between and
over all of the images. To provide an absolute

measure of similarity, the values are plotted rel-
ative to the values predicted theoretically in the case where
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TABLE II
QUANTITATIVE RESULTS OF CORONARY IMAGE COMBINATION.

The second column contains the CC values calculated between the composite and high-SNR
gold standard images (=CC ). The cc calculation was performed locally between every corre-
sponding 8� 8 pixel region in the composite and high-SNR gold standard images. To facilitate com-
parison between the different CC values, the data is fisher transformed and normalized by
the standard deviation of the cc values (=� ). The third column is the absolute difference in
vessel edge position (� �edge) between the composite and high-SNR gold standard images. The
vessel tracking calculations could not be performed accurately in one of the experiments due to inad-
equate depiction of the vessel. In one additional experiment, vessel tracking could not be performed
in the grid composite images due to poor image quality. The last column lists the SNR values
associated with the different template sizes. The data in the last column is listed as the mean�standard
deviation, and the remaining columns as mean � standard error.

Fig. 8. Sensitivity for systematic error detection for the coronary image
combination experiments. The vertical axis is the discrepancy between
CC and its theoretically predicted value hCC i. To facilitate
comparison between the different values, the data is normalized by the standard
deviation of the CC values for 8� 8 templates (� � ). The
horizontal axis is the SNR value in the 8� 8 region of the template grid
in which CC is calculated (see Figs. 7(h) and 5). Each point in the plot
represents the mean� standard error over the data placed into SNR
bins of width 1.5. The arrows along the bottom of the plot indicate the range
of SNR values associated with each grid template type (see column
4 in Table II for the mean � standard deviation of each template type).
The decreasing discrepancy with increasing SNR suggests increasing
systematic error detection with increasing SNR .

and are identical except
for noise . The values were
calculated from (10) and the composite noise .
The plot indicates a clear trend of decreasing discrepancy
with increasing . This provides further support for
the hypothesis that sensitivity for systematic error detection
increases with . Note, however, that there is a fair
degree of variability in the data. This is likely due to the fact
that systematic error detection will also partially depend on the

nature of the error, which is not accounted for by .
Additional variability may also be due to a partial breakdown
of the assumption that similarity is determined solely by the

value of the template grids, and due to violations in
the assumption of complete dependence between the different
regions of the template.

The plot in Fig. 8 achieves a value of zero discrepancy for
. Regions of composite images produced from

template grid elements with this value are, there-
fore, identical to the corresponding regions of within
the limits of noise. This suggests that these types of templates
detect systematic errors at a level below the composite image
noise. If this explanation is correct, one would expect the crit-
ical to vary with the composite SNR. This behavior
is in fact observed, as the the critical values for com-
posite images with component images was found to
be 17 and 22, respectively.

D. High-Resolution Real-Time Coronary Artery Imaging

In the last set of experiments, the potential of the techniques
developed in this study was demonstrated by applying image
combination to high-resolution real-time coronary artery
acquisitions. While many approaches could be used to generate
high-resolution real-time images, a reduced FOV technique
was chosen to illustrate the concept in the present study. For
simplicity, the FOV was reduced using a small 3 inch surface
coil. Acquisitions consisted of six interleaf spirals with a 10 cm
FOV. In-plane resolution was either 0.86 mm or 0.91 mm. The
TR was 40 ms, for a temporal resolution of 240 ms (partially
increased through the use of a sliding window reconstruction
[17]).

Fig. 9 displays the result of a reduced FOV image combi-
nation of the left main coronary artery. In the initial real-time
template image [Fig. 9(a) and (b)], the spatial resolution is
high (0.86 mm), but the low SNR makes the overall
image quality poor. In the composite image [Fig. 9(c)], the
SNR is improved substantially. For comparison, an image of
the same anatomy acquired with a standard full-FOV (20 cm)
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Fig. 9. Image combination of the left main coronary artery (in-plane view) on
real-time component images acquired with a 10 cm FOV and a resolution of
0.86 mm. (a) Low-SNR real-time image. (b) Template extracted from (a). The
coronary artery is indicated by the arrows in (a) and (b). (c) Composite image
(n = 36). (d) Image of the same anatomy acquired with a standard full FOV
(20 cm) lower-resolution (1.72 mm) real-time imaging sequence.

Fig. 10. Image combination of the left coronary artery on real-time component
images acquired with a 10 cm FOV and a resolution of 0.91 mm. (a) Low-SNR
real-time image. From this image, a 3� 2 template grid of 16� 32 pixels was
extracted as shown in (b). (c) Composite image (n = 25). The region pointed
out by the arrow does not provide a good depiction of the artery. (d) The
SNR values corresponding to each region of (b).

lower-resolution (1.72 mm) real-time imaging sequence is
displayed in Fig. 9(d). Fig. 10 displays the results of a second
reduced FOV image combination using a 3 2 grid of 16 32
templates. As with the previous example, the composite image
[Fig. 10(c)] provides significantly improved image quality
over the low-SNR template [Fig. 10(b)]. However, note that
the portion of the coronary artery running through the region
highlighted by the arrow in Fig. 10(c) is not well visualized due
to the low in the template [Fig. 10(d)]. This result

reinforces further the validity of the relationship between sen-
sitivity for systematic error detection and . Fig. 11
displays a final reduced FOV image combination example.
The conus artery, not visible in the low-SNR template image,
becomes apparent in the high-SNR composite image.

IV. DISCUSSION

In this study, an algorithm for identifying a set of component
images identical within the limits of noise was analyzed.
It was shown that the sensitivity for the detection of systematic
errors of this technique depends on the value of the
template, which in turn depends on the noise, and the template
size and structure. As a rough guide, for composite coronary
artery images with , a template with
provided sufficient sensitivity. In this study, all of the composite
images generated by 32 32 templates and some generated by
16 16 templates satisfied this criteria. However, it was also
shown that this required varies directly with the
composite SNR. Note, however, that since this study did not
take into account the nature of the systematic errors in the anal-
ysis, the precise results obtained in this study may vary slightly
in other situations where the nature of the systematic error may
differ.

The utility of varying template size to alter will
be dictated by the relative dependence of different regions of the
anatomy contained within the template. For the analysis in this
study, it was assumed that a strong dependence existed. Based
on the strong relationship observed between composite image
quality and , it can be concluded that this assump-
tion was justified. This strong dependence is likely due to the
fact that all template regions were contained entirely within the
heart structure itself and, thus, connected physically. This does
suggest, however, that there would be likely no advantage to
using a larger template that contains a mixture of anatomical
structures (e.g., the heart and chest wall), since the motions of
these structures would be less related.

In a previous study by our group [10], the impact of varying
template size on motion tracking accuracy was explored. It was
found that larger template sizes lead to greater accuracy. This
result was attributed to less sensitivity to random error. This re-
sult corresponds to the observations in the present study, where
larger template sizes results in less random error, thus leading to
a greater capability of detecting underlying systematic errors.

To achieve as large a sensitivity for systematic error detec-
tion as possible, the above discussion implies that one should
use the largest template size that contains physically connected
anatomy. However, another factor to consider is the time re-
quired to identify an appropriate component image set. Fig. 12
indicates that the time required to reach the termination point
generally increases with the value. This is likely
due to the fact that the lower the tolerance for systematic error,
the lower the probability of accepting a given image and, thus,
the longer the time required to acquire the necessary data. An-
other factor which may also affect the efficiency is the nature of
the anatomical motion. With the current implementation of the
CC algorithm, images will be acceptable only if they differ by
(at most) a rigid-body translation. Efficiency may be reduced
using larger template sizes since rigid-body translations will
be less likely over this region. To provide sufficient sensitivity
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Fig. 11. Image combination of the right coronary artery on real-time component images acquired with a 10 cm FOV and a resolution of 0.91 mm. (a) Low-SNR
real-time image with the 2� 2 grid of 32� 32 templates indicated. (b) The template region extracted from (a). (c) Composite image (n = 19). The arrowhead
indicates the conus branch, which is not apparent in the low-SNR template image (b).

Fig. 12. Efficiency of component image selection for the coronary artery
image combination experiments. The time required per component image to
reach the termination point (12) is plotted against the SNR value of the
templates (calculated as described in Fig. 8). Each point in the plot represent
the mean� standard error of the data placed into SNR bins of width
3. The arrows along the bottom of the plot indicate the range of SNR
values associated with each template type.

for systematic error detection in the most efficient manner, the
best strategy is, therefore, to use a template with an
close to the critical value. To cover large anatomic areas in this
manner may in practice require an array of different-sized tem-
plates over different regions of the anatomy, rather than a grid
of equally sized templates used (for analysis purposes) in the
present study.

For templates at the critical value, the time
required to reach the termination point was about 2–3 s/image.
Since the temporal resolution of the real-time images was 120
ms, this implies an efficiency of about 4%–6%. This is close
to the range for conventional navigator echo techniques, where
efficiencies (product of navigator efficiency times cardiac
window) are typically in the range of 5%–10% [21]. However,
a direct comparison between the efficiency of conventional and
image combination techniques may not be meaningful, since
the termination conditions are quite different [i.e., minimal

diaphragm displacement versus (12)]. There is also significant
potential for improving the efficiency of image combination.
For example, the termination point was set conservatively at the
98% confidence level for . However, composite image
quality appeared to improve quite gradually on the approach to
the termination condition (e.g., see Fig. 2). With a less stringent
termination condition, it may be possible to achieve significant
improvements in efficiency, without a significant reduction in
image quality.

In the future, this approach could be extended into three
dimensions by either applying the same sorts of techniques to
three-dimensional real-time images, or by applying the 2-D
techniques to sequential slices.

V. CONCLUSION

High-quality coronary images were generated by combining
a series of lower-quality real-time images. The main challenge
addressed was the identification of an appropriate set of com-
ponent images where the introduction of significant artifact into
the composite image is avoided. A set of component images
identical within the limits of noise was selected using CC tem-
plate matching. It was shown that the sensitivity for the detection
of systematic errors varied monotonically with the
value of the template, which in turn increased with template size
(among other factors). The value providing suffi-
cient sensitivity was shown to be related to the composite SNR.
After validation of the technique on standard, real-time images,
its potential was illustrated through application to high-resolu-
tion, reduced FOV, real-time images of coronary arteries. As the
limits of real-time imaging continue to be extended, image com-
bination, therefore, has the potential to provide an accurate, clin-
ically applicable method for generating high-quality images in
the presence of motion.
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